DETERMINING ASPHALT CONTENT FOR RECYCLED ASPHALT PAVEMENT (RAP) MATERIALS

Final Report

PROJECT 304-221

DETERMINING ASPHALT CONTENT FOR RECYCLED ASPHALT PAVEMENT (RAP) MATERIALS

Final Report

PROJECT 304-221

by
Gary Thompson
Asphalt Pavement Association of Oregon
5240 Gaffin Rd. SE
Salem, OR 97301
for
Oregon Department of Transportation
Research Unit
200 Hawthorne SE, Suite B-240
Salem OR 97301-5192
and
Federal Highway Administration
Washington, D.C.

July 2003

Technical Report Documentation Page

SI* (MODERN METRIC) CONVERSION FACTORS									
APPROXIMATE CONVERSIONS TO SI UNITS					APPROXIMATE CONVERSIONS FROM SI UNITS				
Symbol	When You Know	Multiply By	To Find	Symbol	Symbol	When You Know	Multiply By	y To Find	Symbol
LENGTH					LENGTH				
in	inches	25.4	millimeters	mm	mm	millimeters	0.039 i	inches	in
ft	feet	0.305	meters	m	m	meters	3.28 f	feet	ft
yd	yards	0.914	meters	m	m	meters	1.09 y	yards	yd
mi	miles	1.61	kilometers	km	km	kilometers	0.621 m	miles	mi
AREA					AREA				
in ${ }^{2}$	square inches	645.2	millimeters squared	mm^{2}	mm^{2}	millimeters squared	0.0016	square inches	in ${ }^{2}$
ft^{2}	square feet	0.093	meters squared	m^{2}	m^{2}	meters squared	10.764	square feet	ft^{2}
yd^{2}	square yards	0.836	meters squared	m^{2}	m^{2}	meters squared	1.196 s	square yards	yd^{2}
ac	acres	0.405	hectares	ha	ha	hectares	2.47 a	acres	ac
mi^{2}	square miles	2.59	kilometers squared	km^{2}	km^{2}	kilometers squared	0.386	square miles	mi^{2}
VOLUME					VOLUME				
fl oz	fluid ounces	29.57	milliliters	ml	ml	milliliters	0.034	fluid ounces	fl oz
gal	gallons	3.785	liters	L	L	liters	0.264	gallons	gal
ft^{3}	cubic feet	0.028	meters cubed	m^{3}	m^{3}	meters cubed	35.315	cubic feet	ft^{3}
$y d^{3}$	cubic yards	0.765	meters cubed	m^{3}	m^{3}	meters cubed	1.308 c	cubic yards	yd ${ }^{3}$
NOTE: Volumes greater than 1000 L shall be shown in m^{3}.									
MASS					MASS				
oz	ounces	28.35	grams	g	g	grams	0.035 o	ounces	oz
lb	pounds	0.454	kilograms	kg	kg	kilograms	2.205 p	pounds	1 b
T	short tons (2000 lb)	0.907	megagrams	Mg	Mg	megagrams	1.102 s	short tons (2000 lb)	T
TEMPERATURE (exact)					TEMPERATURE (exact)				
${ }^{\circ} \mathrm{F}$	Fahrenheit	(F-32)/1.8	Celsius	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	Celsius	$1.8 \mathrm{C}+32 \mathrm{~F}$	Fahrenheit	${ }^{\circ} \mathrm{F}$
*SI is the symbol for the International System of Measurement									

ACKNOWLEDGEMENTS

The author thanks Mike Remily, ODOT Pavement Quality Engineer, and the ODOT Bituminous Crew for sampling and testing the various RAP materials used in this study.

DISCLAIMER

This document is disseminated under the sponsorship of the Oregon Department of Transportation and the United States Department of Transportation in the interest of information exchange. The State of Oregon and the United States Government assume no liability of its contents or use thereof.

The contents of this report reflect the view of the authors who are solely responsible for the facts and accuracy of the material presented. The contents do not necessarily reflect the official views of the Oregon Department of Transportation or the United States Department of Transportation.

The State of Oregon and the United States Government do not endorse products of manufacturers. Trademarks or manufacturers' names appear herein only because they are considered essential to the object of this document.

This report does not constitute a standard, specification, or regulation.

DETERMINING ASPHALT CONTENT FOR RECYCLED ASPHALT PAVEMENT (RAP) MATERIALS

TABLE OF CONTENTS

1.0 INTRODUCTION 1
1.1 Problem Statement 1
1.2 Proposed Methodology 2
2.0 SIMPLIFIED EQUATION 5
2.1 BACKGROUND 5
2.2 Simplified EQUATION 5
2.3 Validation of Analytic Solution 5
3.0 EXACT EQUATION 7
3.1 BACKGROUND 7
3.2 Exact EQUATION 7
3.3 Validation of Exact Equation 8
4.0 LABORATORY TESTING 9
5.0 CONCLUSIONS AND RECOMMENDATIONS 11
5.1 Simplified EqUATION 11
5.2 Exact Equation 11
APPENDIX A: Validation of Simplified Equation
APPENDIX B: Field Test Results
LIST OF TABLES
Table 2.1: Known test inputs based on virgin mix design 5
Table 3.1: Known test inputs using 1000 g of RAP 8

1.0 INTRODUCTION

1.1 PROBLEM STATEMENT

The Oregon Department of Transportation (ODOT) eliminated solvent extractions for measuring asphalt cement content $\left(\mathrm{P}_{\mathrm{b}}\right)$ of hot mixed asphalt concrete (HMAC) in 1997 due to worker health concerns. In lieu of chlorinated solvents, ODOT began using the Ignition Method (AASHTO T 308) to establish asphalt cement contents for HMAC and recycled asphalt pavement (RAP) materials (AASHTO 2001).

The ignition method involves burning an asphalt mixture (or RAP) sample of known dry mass in an ignition furnace. The temperature in the ignition furnace is such that the flammable asphalt cement material is ignited and consumed leaving only the inert aggregate material as residue. The exact asphalt cement content can be calculated based on the before and after mass of this burning process if two conditions are met. The first condition is that all of the asphalt cement is consumed during the ignition process. The second condition is that all of the aggregate material remains as the unburned residue.

During the process, however, some small loss of aggregate material generally occurs during the burn. This results in a larger mass change during the process than just the mass of the asphalt cement that is consumed. To correctly calculate the asphalt cement content, a correction factor must be applied to account for this small aggregate loss.

For new materials, the correction factor may be determined by combining known masses of aggregate and asphalt cement. These known masses are then burned in the ignition furnace. The asphalt cement content determined from the final residue is compared to asphalt cement content from the initial known masses. The difference in these two asphalt cement contents becomes the correction factor.

RAP materials are problematic however, because we usually do not have their original asphalt cement and aggregate as separate constituents. Therefore, the correction factor development process described above cannot be performed for RAP materials. To overcome this problem ODOT has elected to assume a 0.50% aggregate correction factor for all RAP materials used in the state. This practice is consistent with most other states in the U.S.

Experience in Oregon shows that correction factors vary widely when using virgin materials. Therefore, it can be reasonably assumed that RAP produced from Oregon mixes would also exhibit a similar variation.

Accurate RAP asphalt cement contents are a critical element in the design and construction of HMAC mixtures. Asphalt cement content is also used as the basis for determining the quantity of asphalt cement for contract payment purposes. If the actual RAP asphalt cement content is substantially different than that determined using the standard 0.50% correction factor, then it
may result in substantial over- or under-payment for RAP asphalt cement contents. This problem becomes more important as mix designs start to approach the specification limits of 30% RAP materials.

There is a need to develop a more accurate means of determining the asphalt cement contents of RAP materials for use in Oregon mixtures.

1.2 PROPOSED METHODOLOGY

Conventional means of measuring asphalt cement contents as a percentage involve physically determining the mass of the asphalt cement. An alternate strategy is to solve for the asphalt cement content using standard volumetric equations for HMAC.

The effective specific gravity of aggregate $\left(\mathrm{G}_{\mathrm{se}}\right)$ for an HMAC mixture remains constant over a range of asphalt contents. The same should hold true for RAP materials. $\mathrm{G}_{\text {se }}$ is calculated as follows:

$$
\begin{equation*}
G_{s e}=\left[\frac{100-P_{b}}{\left(\frac{100}{G_{m m}}\right)-\left(\frac{P_{b}}{G_{b}}\right)}\right] \tag{1-1}
\end{equation*}
$$

where $G_{m m}=$ maximum specific gravity of the mixture,
$G_{b}=$ specific gravity of the asphalt cement, and
$P_{b}=$ asphalt cement content as a percentage of total mixture.
Within the normal range of asphalt cement contents encountered in conventional mixtures, $\mathrm{G}_{\text {se }}$ should be constant. Mathematically this would be:

$$
\begin{equation*}
\mathrm{G}_{\mathrm{se}} \mathrm{~m}=\mathrm{G}_{\mathrm{se}} \mathrm{n} \tag{1-2}
\end{equation*}
$$

where $\mathrm{G}_{\mathrm{se}} \mathrm{m}$ and $\mathrm{G}_{\mathrm{se}} \mathrm{n}=$ effective specific aggregate gravity of aggregate at any two different asphalt contents $\mathrm{P}_{\mathrm{b}} \mathrm{m}$ and P_{b}.

Substituting Equation 1-1 into Equation 1-2:

$$
\begin{equation*}
\left[\frac{100-P_{b} m}{\left(\frac{100}{G_{m m} m}\right)-\left(\frac{P_{b} m}{G_{b}}\right)}\right]=\left[\frac{100-P_{b} n}{\left(\frac{100}{G_{m m} n}\right)-\left(\frac{P_{b} n}{G_{b}}\right)}\right] \tag{1-3}
\end{equation*}
$$

Note that Equation 1-3 uses the same specific gravity of asphalt $\left(\mathrm{G}_{\mathrm{b}}\right)$ for both samples.
The proposed methodology for RAP materials is to artificially create RAP samples of different asphalt cement contents by mixing known amounts of new asphalt cement with the RAP. This would produce the following:

$$
\begin{align*}
P_{b} m & =P_{b r}+\% m \tag{1-4a}\\
P_{b} n & =P_{b r}+\% n \tag{1-4b}
\end{align*}
$$

where $P_{b r}=$ unknown RAP asphalt content, and
$\% m$ and $\% n=$ different known percentages of new asphalt cement.
Substituting Equations 1-4a and 1-4b into Equation 1-3:

$$
\begin{equation*}
\left[\frac{100-\left(P_{b r}+\% m\right)}{\left(\frac{100}{G_{m m} m}\right)-\left(\frac{P_{b r}+\% m}{G_{b}}\right)}\right]=\left[\frac{100-\left(P_{b r}+\% n\right)}{\left(\frac{100}{G_{m m} n}\right)-\left(\frac{P_{b r}+\% n}{G_{b}}\right)}\right] \tag{1-5}
\end{equation*}
$$

The maximum specific gravities $\left(\mathrm{G}_{\mathrm{mm}}\right)$ of these mixtures are then measured in the laboratory. Using a reasonable assumption for G_{b} the only remaining unknown P_{br} can then be solved.

2.0 SIMPLIFIED EQUATION

2.1 BACKGROUND

Equation 1-5 has two unknowns; the RAP asphalt content $\left(\mathrm{P}_{\mathrm{br}}\right)$ and the specific gravity of the combined RAP and new added asphalt cements $\left(\mathrm{G}_{\mathrm{b}}\right)$. It is not possible to solve Equation 1-5 with two unknowns, so a reasonable assumption must be made for G_{b}. Typical neat asphalt cements in Oregon have specific gravities ranging from 1.020 to 1.030 . For this research a value of $G_{b}=1.025$ will be used.

2.2 SIMPLIFIED EQUATION

Solving Equation 1-5 for P_{br} gives the following:

$$
\begin{equation*}
P_{b r}=100 \%+\% m\left[\frac{G_{m m} m\left(G_{m m} n-G_{b}\right)}{G_{b}\left(G_{m m} m-G_{m m} n\right)}\right]-\% n\left[\frac{G_{m m} n\left(G_{m m} m-G_{b}\right)}{G_{b}\left(G_{m m} m-G_{m m} n\right)}\right] \tag{2-1}
\end{equation*}
$$

2.3 VALIDATION OF ANALYTIC SOLUTION

To validate the analytic solution given in Equation 2-1, a set of test data was taken from a virgin mix design. In the mix design process, samples are prepared over a range of known asphalt contents, P_{b}. The mix designer selected P_{b} 's of $5.0 \%, 5.5 \%, 6.0 \%$ and 6.5%, with an asphalt cement of known specific gravity, $\mathrm{G}_{\mathrm{b}}=1.028$.

To test the analytic solution, it was assumed that this was an equivalent RAP mixture with an unknown RAP asphalt content, $\mathrm{P}_{\mathrm{br}}=3.0 \%$. The remaining asphalt cement above 3.0% was considered the new added oil for each increment. Therefore, the corresponding added oil increments were $2.0 \%, 2.5 \%, 3.0 \%$ and 3.5% (i.e., a P_{br} of 3.0% plus added oil of 2.0% would equate to the original known mix design increment of 5.0%, etc.).

The $\mathrm{G}_{\text {se }}$ was calculated for the mix design and Rice gravities back-calculated to five decimal places for each known increment. The Rice gravities are given in Table 2.1:

Table 2.1: Known test inputs based on virgin mix design

\% Added Oil	2.0%	2.5%	3.0%	3.5%
\mathbf{G}_{mm}	2.48719	2.46874	2.45057	2.43266

If the analytic model is correct, then Equation 2-1 should correctly predict the asphalt content of the RAP as 3.0% across any two sets of asphalt contents given in Table 2.1. The results of

Equation 2-1 are provided in Appendix A for all combinations of new added oil listed above. The predicted RAP oil contents ranged from 2.99 to 3.03% depending on the two increments chosen as inputs. This would seem to indicate the solution is a reasonable predictor of the unknown increment of RAP asphalt.

In actual practice the specific gravity of the RAP asphalt would be unknown and therefore would need to be assumed. In most volumetric equations the solutions are relatively insensitive to the specific gravity of the asphalt, G_{b}. It was decided in the absence of a known value $G_{b}=1.025$ would be assumed.

When the same analysis was ran on the inputs from Table 2.1 using $\mathrm{G}_{\mathrm{b}}=1.025$, the results were less successful. The predicted RAP asphalt contents dropped significantly and ranged from 2.52 to 2.56%. The error from the true value of 3.0% is of the same magnitude as the assumed 0.50% correction factor currently in use.

It is apparent that the analytic solution is not insensitive to the specific gravity of asphalt as assumed. The solution would only be practical if the actual specific gravity of the combined RAP asphalt and new added asphalt is accurately known. In general, there is currently no easy way to determine this unknown specific gravity in the field.

3.0 EXACT EQUATION

3.1 BACKGROUND

The sensitivity of Equation 2-1 to the value of the specific gravity of the asphalt $\left(\mathrm{G}_{\mathrm{b}}\right)$ demonstrates the need for a more exact equation for G_{b} in Equation 1-5. An equation will be derived which exactly accounts for the specific gravity of the RAP asphalt cement and the new added asphalt cement. The specific gravity of the new added asphalt will be known and only the RAP asphalt specific gravity will need to be assumed.

3.2 EXACT EQUATION

An exact representation of the $\mathrm{G}_{\text {se }}$ equation must recognize the separate contribution of the RAP asphalt and the new added asphalt. In all probability each will have its own unique specific gravity. By definition:

$$
\begin{equation*}
\text { Total } P_{b}=\left[\frac{\left(P_{b r} / 100\right) \text { Mass }_{\text {RAP }}+\text { Mass }_{\text {NEW OIL }}}{\text { Mass }_{\text {RAP }}+\text { Mass }_{\text {NEW OIL }}}\right] x 100 \% \tag{3-1}
\end{equation*}
$$

where Mass $_{\text {RAP }}=$ dry mass of RAP sample, and
Mass $_{\text {NEW OIL }}=$ mass of added new oil,
define the following:

$$
\begin{align*}
& A_{m}=\frac{\operatorname{MaSs}_{\text {RAP }}}{\text { Mass }_{\text {RAP }}+\text { Mass }_{\text {NEW OIL }} m} \tag{3-2a}\\
& B_{m}=\frac{100 \text { Mass }_{\text {NEW OIL }} m}{\operatorname{MaSs}_{\text {RAP }}+\operatorname{MaSs}_{\text {NEW OLL }} m} \tag{3-2b}
\end{align*}
$$

where $\operatorname{Mass}_{\text {NEW OLI }} m=$ mass of added new oil to produce a $\%$ m increase.
Substituting Equations 3-2a and 3-2b into Equation 3-1 the total asphalt content for any added asphalt cement increment m is as follows:

$$
\begin{equation*}
\text { Total } P_{b m}=P_{b r} A_{m}+B_{m} \tag{3-3}
\end{equation*}
$$

A more exact equation for the Specific Gravity of the Combined Asphalt Cements may now be written as follows:

$$
\begin{equation*}
\frac{\text { Total } P_{b m}}{\text { Total } G_{b}}=\frac{P_{b r} A_{m}}{G_{b r}}+\frac{B_{m}}{G_{b}} \tag{3-4}
\end{equation*}
$$

where Total $G_{b}=$ combined specific gravity of the RAP oil and new oil,
$G_{b r}=$ specific gravity of the RAP oil, and
$G_{b}=$ specific gravity of the new oil
Substituting Equation 3-4 into Equation 1-3 and solving for $\mathrm{P}_{\text {br }}$ gives the following:

$$
\begin{equation*}
\left.P_{b r}=G_{b r}\left\{\frac{\left(G_{b} / G_{n m} n\right)\left(100-B_{m}\right)-\left(G_{b} / G_{n m}\right)\left(100-B_{n}\right)+\left(B_{m}-B_{n}\right)}{A_{m}\left[\left(B_{n} / 100\right)\left(G_{b}-G_{b r}\right)-G_{b}\right]+A_{n}\left[\left(B_{m} / 100\right)\left(G_{b r}-G_{b}\right)+G_{b}\right]+G_{b r}\left[A_{m}\left(G_{b} / G_{n n} n\right)-A_{n}\left(G_{b} / G_{n m}\right)\right]}\right\}\right\} \tag{3-5}
\end{equation*}
$$

3.3 VALIDATION OF EXACT EQUATION

To validate the analytic solution given in Equation 3-5, a set of data was constructed based on 1000 g of RAP with an unknown $\mathrm{P}_{\mathrm{br}}=5.0 \%$ and an unknown $\mathrm{G}_{\mathrm{br}}=1.024$. The effective specific gravity of the aggregate was arbitrarily chosen as 2.73361 and the resulting Rice gravities were back-calculated as shown in Table 3.1.

Table 3.1: Known test inputs using 1000 g of RAP

Mass of Added Oil	0.0 g	10.0 g	20.0 g	30.0 g
\mathbf{G}_{mm}	2.52300	2.48736	2.45338	2.42096

If the analytic model is correct, Equation 3-5 should correctly predict the asphalt content of the RAP as 5.0% across any two sets of added oil. However, when the inputs were entered into Equation 3-5, the solution across all sets of added oil came out to zero.

Upon closer examination it was determined that in every case it was the numerator of Equation 3-5 that was collapsing to zero, as Equation 3-6 shows.

$$
\begin{equation*}
\left(G_{b} / G_{n m} n\right)\left(100-B_{m}\right)-\left(G_{b} / G_{n m} m\right)\left(100-B_{n}\right)+\left(B_{m}-B_{n}\right)=0 \tag{3-6}
\end{equation*}
$$

4.0 LABORATORY TESTING

Representative RAP materials were gathered from ten different sources around the state. Samples of these materials were mixed with $1 \%, 2 \%, 3 \%$ and 4% increments of added new oil. Rice gravities were performed on the different increments per AASHTO T 209 (2001). The results are contained in Appendix B.

This testing was performed concurrently with the development of the two equations used in this research effort. Had a successful solution been found to either equation, this data would have been used to test the validity of the equations. However, because a stable solution was not found for either equation, trials were not made. This data is presented as an archive for future research.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 SIMPLIFIED EQUATION

The simplified equation showed early promise and was tested with a set of known values including the actual Specific Gravity of the RAP asphalt ($\mathrm{G}_{\mathrm{b}}=1.028$). Under these circumstances the equation did a reasonable job of predicting the RAP asphalt content.

However, when the Specific of Gravity of Asphalt was assumed to be $\mathrm{G}_{\mathrm{b}}=1.025$, the solution diverged significantly from the true answer (i.e. - the known RAP asphalt content of 3.0% was predicted to be 2.52%). Hence, a relatively minor three thousandths error in assuming a specific gravity resulted in a 0.48% error in asphalt content. This is the same magnitude as the assumed standard ignition oven burn loss of 0.5%.

It was concluded that the simplified equation was not practical for field use.

5.2 EXACT EQUATION

In lieu of the simplified equation a more exact equation was attempted to try to reduce the sensitivity to G_{b}. The resulting equation was mathematically correct in its derivation, however, the numerator of the final equation collapses to zero when the test set of known values is entered into the equation.

The exact equation also now contains the unknown variable G_{br}. Attempts made to solve this equation numerically failed when the author was unable to find a second linearly independent equation to account for the additional unknown variable G_{br}.

Because the exact equation collapses to zero, it was concluded that it also was not practical for field use.

6.0 REFERENCES

American Association of State Highway and Transportation Officials (AASHTO). "Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part 2 Tests". Washington, D.C. 2001.

Asphalt Institute. "Manual Series No. 2 (MS-2)", Sixth Edition. 1993.

APPENDIX A

VALIDATION OF SIMPLIFIED EQUATION

RAP Source: Example

Simplified Linear Analytic Solution

Inputs:

Gb: $\quad 1.025$

New Oil:

Pb1	Pb2	Pb3	Pb4
2.00	2.50	3.00	3.50

Gmm1	Gmm2	Gmm3	Gmm4
2.48719	2.46874	2.45057	2.43266

Coefficients A :

	Gmm2	Gmm3	Gmm4
Gmm1	6.140225	6.095033	6.050488
Gmm2		6.049820	6.005605
Gmm3			5.961404

Coefficients B \& C:

Gmm1	Gmm2	Gmm3	Gmm4
2.549370	2.530459	2.511834	2.493477

Coefficients A-B:

	Pb2	Pb3	Pb4
Pb1	3.590856	3.545663	3.501118
Pb2		3.519362	3.475147
Pb3			3.449569

Coefficients A-C:

	Pb2	Pb3	Pb4
Pb1	3.609767	3.583199	3.557011
Pb2		3.537986	3.512129
Pb3			3.467927

Coefficients B-C:

	Pb2	Pb3	Pb4
Pb1	0.018911	0.037536	0.055893
Pb2		0.018624	0.036982
Pb3			0.018358

Calculated RAP Asphalt Content:

	Pb2	Pb3	Pb4
Pb1	2.560329	2.538398	2.540947
Pb2		2.516687	2.531406
Pb3			2.545965

RAP Asphalt Content Study - 2002

RAP Source: Example

Simplified Linear Analytic Solution

Inputs:
Gb: $\quad 1.028$
New Oil:

Pb1	Pb2	Pb3	Pb4
2.00	2.50	3.00	3.50
Gmm1	Gmm2	Gmm3	Gmm4
2.48719	2.46874	2.45057	2.43266

Coefficients A:

	Gmm2	Gmm3	Gmm4
Gmm1	6.140225	6.095033	6.050488
Gmm2		6.049820	6.005605
Gmm3			5.961404

Coefficients B \& C:

Gmm1	Gmm2	Gmm3	Gmm4
2.556831	2.537865	2.519186	2.500774

Coefficients A-B:

	Pb2	Pb3	Pb4
Pb1	3.583394	3.538202	3.493656
Pb2		3.511955	3.467740
Pb3			3.442218

Coefficients A-C:

	Pb2	Pb3	Pb4
Pb1	3.602361	3.575847	3.549713
Pb2		3.530634	3.504831
Pb3			3.460629

Coefficients B-C:

	Pb2	Pb3	Pb4
Pb1	0.018967	0.037645	0.056057
Pb2		0.018679	0.037090
Pb3			0.018411

Calculated RAP Asphalt Content:

	Pb2	Pb3	Pb4
Pb1	3.034094	3.012271	3.014808
Pb2		2.990669	3.005314
Pb3			3.019800

APPENDIX B

FIELD TEST RESULTS

Albina PF64-22 Gb(25/25) $=1.023$

RAP Source	$\begin{gathered} \text { Mass } \\ \text { Pyc+Lid } \\ + \text { Mix } \end{gathered}$	Mass Pyc+Lid	Dry Sample Mass	SSD Sample Mass	$\begin{gathered} \text { Mass } \\ \text { Pyc+Lid+ } \\ \text { Water } \end{gathered}$	$\begin{gathered} \text { Mass } \\ \text { Pyc+Lid } \\ + \text { Water } \\ + \text { Mix } \end{gathered}$	Water Temp (F)	Gmm	Gmm ssd

Porter Yett	$\mathrm{Pbr}+1 \%$	5156.7	2972.4	2184.3	2191.8	7370.4	8661.0	75.0		2.44411
Porter Yett	$\mathrm{Pbr}+2 \%$	5158.6	2977.8	2180.8	2187.0	7375.8	8655.0	74.4	2.41881	2.40229
Porter Yett	$\mathrm{Pbr}+3 \%$	4992.3	2813.6	2178.7	2188.0	7217.6	8477.4	74.6	2.37099	2.34496
Porter Yett	$\mathrm{Pbr}+4 \%$	5131.9	2958.9	2172.0	2180.9	7357.9	8606.9	74.4	2.35320	2.33072

MBI-Eugene	$\mathrm{Pbr}+1 \%$	5150.5	2972.4	2178.1	2186.5	7370.4	8659.3	77.0	2.44951	2.42658
MBI-Eugene	$\mathrm{Pbr}+2 \%$	5155.5	2977.8	2177.7	2180.6	7375.8	8656.2	77.3	2.42695	2.41913
MBI-Eugene	$\mathrm{Pbr}+3 \%$	4984.0	2813.6	2170.4	2174.8	7217.6	8475.0	77.0	2.37722	2.36582
MBI-Eugene	$\mathrm{Pbr}+4 \%$	5123.5	2959.9	2163.6	2167.2	7357.9	8600.9	77.0	2.35021	2.34105

Riverbend	Pbr+1\%	5162.0	2972.4	2189.6	2195.3	7370.4	8668.0	78.4	2.45471	2.43912
Riverbend	Pbr+2\%	5162.4	2977.8	2184.6	2188.0	7375.8	8661.0	78.6	2.42895	2.41981
Riverbend	Pbr+3\%	4997.2	2813.6	2183.6	2186.9	7217.6	8488.6	78.6	2.39272	2.38410
Riverbend	Pbr+4\%	5137.1	2959.9	2177.2	2179.8	7357.9	8613.8	78.6	2.36318	2.35653
MBI-Corvallis	Pbr+1\%	5158.4	2972.4	2186.0	2191.7	7370.4	8654.1	77.3	2.42270	2.40749
MBI-Corvallis	Pbr+2\%	5156.3	2977.8	2178.5	2182.9	7375.8	8640.8	78.0	2.38478	2.37335
MBI-Corvallis	Pbr+3\%	4993.4	2813.6	2179.8	2189.9	7217.6	8468.6	77.5	2.34690	2.32165
MBI-Corvallis	Pbr+4\%	5126.4	2959.9	2166.5	2175.3	7357.9	8590.7	77.9	2.32034	2.29867

Island City Strip	Pbr+1\%	5149.7	2972.4	2177.3	2185.6	7370.4	8661.4	77.7	2.45662	2.43383
Island City Strip	$\mathrm{Pbr}+2 \%$	5144.8	2977.8	2167.0	2178.7	7375.8	8651.0	77.5	2.42992	2.39845
Island City Strip	$\mathrm{Pbr}+3 \%$	4981.8	2813.6	2168.2	2178.6	7217.6	8479.2	77.5	2.39157	2.36445
Island City Strip	Pbr+4\%	5122.7	2959.9	2162.8	2170.2	7357.9	8607.9	77.3	2.36941	2.35036
Lakeside	Pbr+1\%	5163.2	2972.4	2190.8	2191.1	7370.4	8690.4	76.8	2.51585	2.51498
Lakeside	$\mathrm{Pbr}+2 \%$	5162.9	2977.8	2185.1	2195.9	7375.8	8679.9	76.8	2.48025	2.45021
Lakeside	Pbr $+3 \%$	5002.1	2813.6	2188.5	2194.3	7217.6	8508.5	76.2	2.43817	2.42251
Lakeside	$\mathrm{Pbr}+4 \%$	5134.9	2959.9	2175.0	2180.2	7357.9	8628.9	76.4	2.40597	2.39221
Roseburg Paving	Pbr+1\%	5166.9	2972.4	2194.5	2199.4	7370.4	8690.9	76.2	2.51087	2.49687
Roseburg Paving	Pbr+2\%	5172.2	2977.8	2194.4	2200.7	7375.8	8682.3	75.9	2.47145	2.45404
Roseburg Paving	Pbr+3\%	5005.0	2813.6	2191.4	2197	7217.6	8506.7	75.7	2.42868	2.4137
Roseburg Paving	Pbr+4\%	5149.7	2959.9	2189.8	2191.8	7357.9	8632.5	75.7	2.3927	2.38748

Sand Creek (US 97)	Pbr+1\%	5155.8	2972.4	2183.4	2186.6	7370.4	8641.0	76.2		2.39198
Sand Creek (US 97)	Pbr+2\%	5135.5	2977.8	2157.7	2160.3	7375.8	8619.1	76.4	2.35969	2.35300
Sand Creek (US 97)	Pbr+3\%	4951.0	2813.6	2137.4	2139.3	7217.6	8435.0	76.6	2.32326	2.31847
Sand Creek (US 97)	Pbr+4\%	5143.2	2959.9	2183.3	2185.4	7357.9	8597.4	76.6	2.31331	2.30817

| Celilo-Rufus (I-84) | Pbr+1\% | 5152.7 | 2972.4 | 2180.3 | 2185.5 | 7370.4 | 8695.7 | 77.3 | 2.55006 | 2.53464 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Celilo-Rufus (I-84) | Pbr+2\% | 5208.8 | 2977.8 | 2230.2 | 2235.4 | 7375.8 | 8714.7 | 77.3 | 2.50219 | 2.48767 |
| Celilo-Rufus (I-84) | Pbr+3\% | 5062.6 | 2813.6 | 2249.0 | 2255.3 | 7217.6 | 8547.0 | 77.0 | 2.44563 | 2.42899 |
| Celilo-Rufus (I-84) | Pbr+4\% | 5046.4 | 2959.9 | 2086.5 | 2090.2 | 7357.9 | 8586.1 | 76.8 | 2.43097 | 2.42053 |

